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Abstract
The power spectrum of finite-temperature quantum electromagnetic
fluctuations produced by elementary charge carriers under the influence of an
external electric field is investigated. It is found that under the combined action
of the photon heat bath and the external field, the low-frequency asymptotic of
the power spectrum is modified both qualitatively and quantitatively. The new
term in the power spectrum is inversely proportional to frequency, but is odd
with respect to it. It comes from the connected part of the correlation function,
and is related to the temperature and external field corrections to the photon and
charge carrier propagators. In application to the case of a biased conducting
sample, this term gives rise to a contribution to the voltage power spectrum
which is proportional to the absolute system temperature, the charge carrier
mobility, the bias voltage squared, and a factor describing dependence of the
noise intensity on the sample geometry. It is verified that the derived expression
is in agreement with the experimental data on 1/f -noise measurements in metal
films. It is shown also that the obtained result provides a natural resolution to
the problem of divergence of the total noise power.

PACS numbers: 72.70.+m, 12.20.−m, 42.50.Lc

1. Introduction

The origin of flicker noise [1]1 observed in virtually all conducting media remains an open
issues in condensed matter theory. Despite numerous models suggested since its discovery
80 years ago there is presently no consistent theory which would explain the main characteristic
properties of this omnipresent noise. The power spectral density of flicker noise is proportional
to f −γ , where f is the frequency, and the exponent γ is about unity (usually γ takes values

1 General mathematical description of 1/f noise can be found in the last part of [1], which also contains an extensive
bibliography. An up-to-date bibliographic list on 1/f -noise can be found at http://www.nslij-genetics.org/wli/1fnoise.
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from 0.9 to 1.5). One of the essential difficulties for theoretical explanation is the fact that
experiments show no limits for this dispersion law, neither lower or upper. Although flicker
noise dominates only at sufficiently low frequencies, the 1/f -component is detected in the
whole measured band up to 106 Hz. It is also experimentally established that the noise
power spectrum of a sample is proportional to the applied bias squared, and roughly inversely
proportional to its volume.

Ubiquity of flicker noise and universality of its properties suggest the existence of a
simple reason for its occurrence. It is natural to expect this reason to have a quantum
origin. Although some of the models suggested so far do consider various quantum effects
as underlying mechanisms of flicker noise (such as, for instance, trapping of charge carriers),
it may well be that its origin is to be sought at the most fundamental level. Namely, it is
plausible that the phenomenon of flicker noise has its roots in the very quantum nature of
interaction of elementary charges with electromagnetic field. From this point of view, the
problem was attacked by Handel [2]2, who suggested that the observed flicker noise is related
to the spectrum of low-energy photons emitted in any scattering process, which, according to
Handel, has the 1/f profile and reflects the well-known property of bremsstrahlung, namely,
the infrared divergence of the cross-section considered as a function of the energy loss. Later,
the argument was modified and the so-called coherent quantum 1/f effect described [3] on the
basis of quantum electrodynamic results of Kibble and Zwanziger [4, 5]. Although Handel’s
theory was severely criticized in many respects [6, 7], it has found support in independent
investigations of [8, 9]. Handel’s approach is based on consideration of current fluctuations.
An essentially different quantum approach to the problem was recently proposed [10, 11], in
which flicker noise is treated as a voltage fluctuation originating from quantum fluctuations
of individual electric fields of charge carriers. In this case, the noise power spectrum is found
by evaluating the two-point correlation function of the Coulomb potential of an elementary
particle, dispersion of this function being related to the quantum spreading of the particle wave
packet. However, the magnitude of noise induced by an external electric field, given by this
theory, turned out to be too small to explain the observed noise level.

The purpose of this paper is to show that the value of induced quantum noise is actually
significantly higher than the previously calculated. It turns out that in evaluating the effect of
external electric field it is essential to take into account statistical properties of electromagnetic
field. The point is that simultaneous account of the effects of photon heat bath and external
field leads to appearance of a contribution of new type. Namely, the new term in the noise
power spectrum is odd with respect to frequency, and hence corresponds to the part of the
correlation function, which is odd with respect to the difference of its time arguments. The
underlying reason that makes the appearance of this term possible is the inhomogeneity
in time of fluctuations produced by individual charge carriers. As a consequence of this
inhomogeneity, the correlation function of each individual contribution to the Coulomb field
fluctuation depends on both time arguments separately, rather than on their difference only,
so that symmetry under interchanging of the arguments does not forbid appearance of the
odd contribution. The time homogeneity is restored only after summing up all independent
contributions. The new contribution stems from the connected part of the correlation function
of particle’s field, rather than from the disconnected one that was in focus of [11], and is related
to the temperature and external field corrections to the photon and charge carrier propagators,
in contrast to considerations of [11] where thermal bath and external field affected only real
particle states.

2 The complete reference list on Handel’s theory is too extensive to cite here. A fairly complete bibliography on the
quantum theory approach to 1/f -noise can be found at http://www.umsl.edu/handel/QuantumBib.html.

http://www.umsl.edu/handel/QuantumBib.html
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The paper is organized as follows. In section 2.1, we briefly discuss the role of the heat
bath effects in evaluating the mean value and the correlation function of electromagnetic field
produced by elementary particles, and identify the contributions relevant in the low-frequency
regime. The power spectral functions of the Coulomb field and voltage fluctuations are defined
in section 2.2, and written in the form convenient for explicit calculations which are carried
out in section 3. The low-frequency asymptotic of the power spectrum of Coulomb potential
fluctuations in the absence of external electric field is evaluated in section 3.1, and is found to
exhibit an inverse frequency dependence. However, the 1/f part of the spectrum is cancelled
in the expression for the voltage spectral density. The non-vanishing 1/f -contribution to the
voltage power spectrum is obtained in section 3.2 upon account of the influence of external
homogeneous electric field on the virtual charger particle propagation. Application of the
obtained results to solids and comparison with experimental data is given in section 3.4. Gauge
independence of our treatment of electromagnetic fluctuations is proved in the appendix.

2. Preliminaries

2.1. Heat bath contribution to particle propagators

Consider a quantized system of charged particles interacting with electromagnetic field. Let
T be the absolute temperature of the system. We are interested in the influence of finite
temperature on quantum properties of the electromagnetic field produced by charged particles.
Specifically, finite-temperature correlations in the values of the particle’s Coulomb fields will
be investigated. To the leading order in the electromagnetic coupling, these correlations are
a single-particle effect, in the sense that in this case only fields produced by one and the
same particle correlate. In what follows, we thus confine ourselves to systems which allow
perturbative treatment of charge carrier collisions, either in terms of original particles, or in
terms of quasi-particles (e.g., conduction electrons in metals). In the latter case, the particle’s
mass and energy–momentum relation should be replaced by the effective ones.

In this section, we shall discuss some general features of the temperature effect, related
to the heat bath influence on virtual propagation of the electromagnetic and charged field
quanta. Evidently, the heat bath has no effect on the mean electromagnetic field of a charged
particle. Indeed, under above assumptions, this field can be represented as the amplitude of
one-photon emission in a transition between free charged particle states, contracted with the
photon propagator. Since the 4-vector of momentum transfer to a free massive particle, p,

is always spacelike, p2 < 0, distribution of real photons appearing in the definition of the
photon propagator is immaterial in the calculation of the field. As a consequence, quantities
built from the mean field, such as the disconnected part of the correlation function, are not
affected by the photon heat bath (details of evaluation of this part see in [10, 11]). Things
change, however, when the connected part of the two-point correlation function of electric
potential is considered. It is defined by the following symmetric expression

Ccon
00 (x; x ′) = 1

2 〈in|Â0(x)Â0(x
′) + Â0(x

′)Â0(x)|in〉, (1)

where x and x ′ are the spacetime coordinates of two observation points, Â0 is the scalar
potential Heisenberg operator, and |in〉 denotes the given in state of the system ‘charged
particle + electromagnetic field’. In the two-photon processes, photon momenta are allowed
to take on lightlike directions, and hence the photon heat bath does contribute to the function
Ccon

00 (x; x ′).
As is well known, the ordinary Feynman rules of the S-matrix theory are not generally

applicable for the calculation of in–in expectation values, and must be modified, e.g., according
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to Schwinger and Keldysh [13]. This complication was overcome in [11] by rewriting
equation (1) in the form

Ccon
00 (x; x ′) = Re〈out|T {Â0(x)Â0(x

′)}|in〉, (2)

which allows the use of the S-matrix rules. This transformation uses equivalence of the
one-particle in and out states (and Hermiticity of the electromagnetic field operator). It is
applicable to the present case as well, despite the fact that now the in state is not one-particle,
because we are not going to take into account scattering processes in the heat bath itself. This
can also be shown directly at the diagrammatic level following the route of transformations
taken in [14], which is formally the same in zero- and nonzero-temperature cases. Thus, in
order to calculate the in–in expectation value (1) taking into account the heat bath effect, the
standard finite-temperature-field-theory techniques can be used [15]. Below we employ a
version of the real-time formalism, developed in [16], which is especially convenient in actual
calculations since the momentum space propagators in this formulation do not involve the step
function.

The real-time formulation involves doubling of all fields, which will be specified by a
two-valued lower index. According to the diagrammatic rules derived in [16], the photon
propagator has the following matrix structure3

Dµν(x) =
∫

d4k

(2π)4
Dµν(k) e−ikx, Dµν(k) = 4πηµν

(
D11(k) D12(k)

D21(k) D22(k)

)
, (3)

where

D11(k) = −D∗
22(k) = 1

k2 + i0
− 2π iδ(k2)

eβ|k0| − 1
, D12(k) = D21(k) = −2π iδ(k2) eβ|k0|/2

eβ|k0| − 1
,

β = 1/T being the inverse absolute temperature of the system. In applications to the problem
of 1/f -noise considered below, the value of the product β|k0| turns out to be very small. For
instance, even for frequencies as large as 106 Hz, and temperatures as small as 1 K, it is less
than 10−27 × 106/(10−16) = 10−5 (the factors 10−27 and 10−16 are contributed by the Planck
and Boltzmann constants, respectively), so the denominators in the above expressions can
be replaced by β|k0|, implying that the second term in D11 dominates. On the other hand,
the temperature effect on the propagation of massive particles is much less prominent. For
instance, in the case of conduction electrons in a crystal (this case will be used throughout as a
standard example), the particle energy ε is of the order (h̄/d)2/m, where m is the particle mass,
and d is the lattice spacing. Taking d ∼ 10−8 cm,m ∼ 10−27 g, we find that ε/T ∼ 10+5,

so that the temperature contributions can be completely neglected (for fermions as well as for
bosons), and the propagator taken in the simple diagonal form

Dφ(x) =
∫

d4k

(2π)4
Dφ(k) e−ikx, Dφ(k) =

(
D

φ

11(k) 0

0 D
φ

22(k)

)
,

D
φ

11(k) = −D
φ∗
22 (k) = (m2 − k2 − i0)−1.

(4)

This is for a scalar particle described by the action

Sφ =
∫

d4x{(∂µφ∗ + ieAµφ∗)(∂µφ − ieAµφ) − m2φ∗φ}, (5)

where e is the particle charge. Account of particle spin, though adds some extra algebra,
does not change the long-range properties of its field, so that following [11] we work with the

3 The photon propagator is written here in the Feynman gauge. The question of gauge independence of the correlation
function is considered in the appendix.
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simplest case of zero-spin particles. The matrix propagators are multiplied in the interaction
vertices, generated by the triple and higher order terms in the Lagrangian, with an additional
minus sign for the product of 2-components, as in the Schwinger–Keldysh techniques. The
arguments of the Green functions are treated as 1-component fields. Finally, external particle
lines represent normalized particle amplitudes or their conjugates, according to whether the
particle is incoming or outgoing, just like in the conventional techniques.

As was mentioned above, the photon propagator is dominated by the temperature
contribution (as long as the range of momentum integration contains lightlike directions,
see discussion in section 3.1), while in the massive particle propagator this contribution is
negligible. It is important, on the other hand, that the heat bath affects significantly the
real particle propagation, i.e., external matter lines in the diagrams. Bilinears of the particle
amplitudes representing these lines are expressed eventually via statistical distribution function
(see section 3.2 for details). Thus, apart from explicit T-dependence coming from the photon
propagator, the correlation function also depends on temperature implicitly through the particle
statistical distribution.

2.2. Power spectral densities of potential and voltage fluctuations

Connected contribution to the power spectral density of electric potential fluctuations is
obtained by Fourier transforming equation (1) with respect to the difference of the time
instants t, t ′:

C(x,x′, t ′, ω) =
∫ +∞

−∞
dτCcon

00 (x, t ′ + τ ;x′, t ′) e−iωτ . (6)

The upper and lower indices in the notation of the correlation function are suppressed in the
left-hand side, for brevity. We are interested ultimately in the power spectrum of voltage
fluctuations, CU, measured between two observation points x,x′ (e.g., two leads attached to
a conducting sample). The connected contribution to the voltage correlation function is given
by

CU(x,x′, t, t ′) = 1
2 〈in|Û (t)Û (t ′) + Û (t ′)Û(t)|in〉, (7)

where Û (t) = Â0(x, t) − Â0(x
′, t) is the operator of voltage between the two points. This

function is separately symmetric with respect to the interchanges x ↔ x′, and t ↔ t ′, unlike
the function Ccon

00 (x; x ′) which is only symmetric under x ↔ x ′. Substituting the definition of
Û (t) in equation (7), the former can be expressed via the latter

CU(x,x′, t, t ′) = Ccon
00 (x, t;x, t ′) + Ccon

00 (x′, t;x′, t ′)
− [

Ccon
00 (x, t;x′, t ′) + Ccon

00 (x′, t;x, t ′)
]
. (8)

Accordingly, the power spectral density of voltage fluctuations, defined by

CU(x,x′, t ′, ω) =
∫ +∞

−∞
dτCU(x, t ′ + τ,x′, t ′) e−iωτ , (9)

is expressed through that of potential fluctuations as

CU(x,x′, t ′, ω)= C(x,x, t ′, ω) + C(x′,x′, t ′, ω)− [C(x,x′, t ′, ω) + C(x′,x, t ′, ω)]. (10)

Although CU(x,x′, t, t ′) is symmetric with respect to the interchange t ↔ t ′, it depends on
both time arguments separately, and therefore CU(x,x′, t, ω) does not have to be an even
function of ω.

When calculating the power spectrum of potential fluctuations according to equations (2)
and (6), it is convenient to perform the Fourier transformation under the sign ‘Re’ in
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(a) (b) (c)

Figure 1. Feynman diagrams representing connected part of correlation function. Wavy lines
denote photon propagators, solid lines massive particle. q and p are the particle 4-momentum and
4-momentum transfer, respectively.

equation (2). For this purpose we introduce the Fourier transform of the two-point Green
function:

G(x,x′, t ′, ω) =
∫ +∞

−∞
dτG(x, t ′ + τ ;x′, t ′) e−iωτ ,

G(x; x ′) = 〈out|T {Â0(x)Â0(x
′)}|in〉,

(11)

with the help of which the power spectral density of potential fluctuations can be written as

C(x,x′, t ′, ω) = 1

2
Re{G(x,x′, t ′, ω) + G(x,x′, t ′,−ω)}

+
i

2
Im{G(x,x′, t ′, ω) − G(x,x′, t ′,−ω)}. (12)

We see that contributions to the function C(x,x′, t ′, ω), and hence to the voltage power
spectrum, are either real even, or imaginary odd functions of frequency.

3. Evaluation of low-frequency asymptotic of spectral density

3.1. Power spectrum in the absence of external electric field

The tree contribution to the right-hand side of equation (2) when the influence of external
electric field is neglected is shown in figure 1. Repeating the argument of [11], it is not
difficult to show that the leading contribution is contained in the diagrams shown in figures 1(a)
and (b). Distinguishing their contributions by the corresponding Latin subscript, we have

Ga(x, x ′) = ie2
∫∫

d4z d4z′{D(x, z)[φ0(z)
↔
∂0 Dφ(z, z′)

↔
∂ ′

0 φ∗
0 (z′)]D(z′, x ′)}11,

Gb(x, x ′) = Ga(x
′, x),

(13)

where

ϕ
↔
∂0 ψ = ϕ∂0ψ − ψ∂0ϕ,

and φ0 is the given particle state. Going over to momentum space with the help of
equations (3) and (4), introducing the spectral function for Ga(x, x ′) according to
equation (11), and writing the matrix product longhand yields

Ga(x,x′, t ′, ω) = (4πe)2
∫∫

d3q

(2π)3

d3p

(2π)3

a(q)a∗(q + p)√
2εq2εq+p

eip0(t ′−t0)−ipx′
Ja(p, q,x − x′, ω),

p0 = εq+p − εq, εq = +
√

q2 + m2,

(14)
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where

Ja(p, q,x − x′, ω) = −i
∫

d3k

(2π)3
eik(x′−x)(2q0 + k0)(2q0 + k0 + p0)

× [
D11(k)D

φ

11(q + k)D11(k − p) + D12(k)D
φ

22(q + k)D21(k − p)
]
k0=ω

. (15)

Here qµ is the particle 4-momentum, a(q) its momentum wavefunction at some time instant
t0, normalized by∫

d3q

(2π)3
|a(q)|2 = 1, (16)

and it is taken into account that D
φ

12 = 0.

The second term in the square brackets in equation (15) can be neglected. Indeed, in view
of the factor D12(k) which is proportional to δ(k2), and the condition k0 = ω, the momentum
k contributes only a tiny value to the argument of the factor D21; for electrons in a crystal, for
instance, the ratio |k|/|p| is of the order (h̄ω/c)/(h̄/d) = ωd/c ≈ ω × 10−18 s. Therefore,
this factor can be written simply as D21(p) ∼ δ(p2). On the other hand, momentum transfer
p to the massive particle is spacelike, and hence the argument of the delta-function is always
nonzero. Furthermore, using explicit expression for the photon propagator, the first term in
the square brackets reads{

1

k2 + i0
− 2π iδ(k2)

eβ|k0| − 1

}
D

φ

11

{
1

(k − p)2 + i0
− 2π iδ((k − p)2)

eβ|k0−p0| − 1

}

= 1

[k2 + i0]
D

φ

11

1

[(k − p)2 + i0]
− 2π iδ(k2)

eβ|k0| − 1
D

φ

11

1

(k − p)2 + i0

− 1

k2 + i0
D

φ

11

2π iδ((k − p)2)

eβ|k0−p0| − 1
+

2π iδ(k2)

eβ|k0| − 1

2π iδ((k − p)2)

eβ|k0−p0| − 1
.

As before, the last term on the right-hand side can be neglected, while the first term, describing
the zero-temperature contribution, has already been considered in [11]. Furthermore, k0 enters
the temperature exponent in the third term in the combination (k0 − p0), and, therefore, this
term does not contribute to the leading order in 1/ω, because in practice |ω| 	 p0. Indeed,
estimating the energy transfer as p0 ≈ (pq)/m, and taking |p| ∼ 1/l, where l is the
characteristic sample length, one finds for our standard example |ω/p0| ∼ 10−8|ω|l, where
l, ω are supposed to be expressed in the CGS system of units. Even for l as large as 1 cm,

this ratio is very small for all practically relevant frequencies. Thus, the contribution of
the second term only remains to be considered. In view of the factor δ(k2), the pole of
the function D11(q + k) in this term does not contribute. This is again a consequence of the
requirement that the momentum transfer to a massive particle on-shell be spacelike: conditions
k2 = 0, q2 = m2, and (q + k)2 = m2 cannot be satisfied altogether. Hence, the scalar particle
propagator can be written simply as D11(q + k) = −1/(2qk), or, assuming that the particle is
nonrelativistic, |q| 	 m, as

D
φ

11(q + k) = − 1

2mω
. (17)

Finally, neglecting k in comparison with p in the factor 1/[(k − p)2 + i0], using p2 < 0 to
omit i0, and retaining only terms singular in ω, we find

Ja(p, q,x − x′, ω) = 2π(2m + p0)

ωβ|ω|p2

∫
d3k

(2π)3
eik(x′−x)δ(ω2 − k2)

= (2m + p0)

2πωβp2
+ O(ω). (18)
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The reason why p0 has been kept along with m in the numerator will become clear soon. As
to the contribution of the diagram shown in figure 1(b), changing k → k + p in equation (15),
and then q → q − p,p → −p in equation (14) shows that

Gb(x,x′, t ′, ω) = G∗
a(x,x′, t ′,−ω).

Thus, the total contribution to the function G(x,x′, t ′, ω) is

G(x,x′, t ′, ω) = Ga(x,x′, t ′, ω) + G∗
a(x,x′, t ′,−ω). (19)

It is seen from this relation and equation (18) that only imaginary part of Ga gives rise to
a nonzero contribution to the total Green function G, and this part corresponds to the term
proportional to p0 on the right-hand side of equation (18). Thus,

G(x,x′, t ′, ω) = − 8πe2

m2βω

∫∫
d3q

(2π)3

d3p

(2π)3
a(q)a∗(q + p)

(pq)

p2
eip0(t

′−t0)−ipx′
, (20)

where, in the denominator, the energies εq, εq+p have been replaced by m, and p0 neglected in
comparison with |p| on account of the condition |q| 	 m, while in the numerator, p0 has been
replaced by its leading long-range term, (pq)/m. It is instructive to see what the right-hand
side of equation (20) becomes in a particularly simple model case when the amplitude a(q)

can be written as

a(q) = b(q) e−iqx0 , (21)

where b(q) is a real function of the particle momentum. In this case, x0 is easily identified
as the mean particle position, and hence, the function b(q) describes the momentum space
profile of the particle wave packet. After extraction of the position-dependent phase factor, the
amplitude becomes a relatively slowly varying function of the particle momentum, therefore,
to the leading order of the long-range expansion, b(q + p) in the integrand of equation (20)
can be replaced by b(q)

G(x,x′, t ′, ω) = − 8πe2

m2βω

∫∫
d3q

(2π)3

d3p

(2π)3
|b(q)|2 (pq)

p2
exp(ip0(t

′ − t0) + ip(x′ − x0)),

(22)

In the exponent, p0 generally cannot be replaced by (pq)/m, because the subleading term
of its long-range expansion, p2/(2m), although small compared to (pq)/m, can change
the phase significantly, provided that the difference (t ′ − t0) is sufficiently large, as is
the case if the particle collisions are neglected. However, taking into account the latter
reduces this difference to the particle mean free time, τf , so that the product p0(t

′ − t0) can
be completely neglected. Indeed, τf can be estimated roughly as d/(|q|/m), and hence,
p0(t

′ − t0) ∼ |p||q|τf /m ∼ d|p| ∼ d/|x′ − x0| 	 1. Then the p integral can be evaluated
with the help of the formula∫

d3p

(2π)3
ei(px) 4πp

p2
= ix

|x|3 ,

yielding

G(x,x′, t ′, ω) = −2i
e2

m2βω

(qr′)
r ′3 , r′ = x′ − x0, (23)

where the overline denotes q-averaging over the given particle state. In the absence of
external electric field, q is zero, and therefore so is the right-hand side of equation (23). As
we will see in the next section, the same result is obtained in the general case without the
use of the model decomposition (21). But even for nonzero q, the voltage power spectrum
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Figure 2. Symbolic diagrammatic picture of the effect of particle collisions and external electric
field (dashed line) on the particle wavefunction.

calculated from G given by equation (23) turns out to be zero. This is verified directly by
substituting expression (23) into equations (12) and (10). The reason for nullification of the
voltage power spectrum is easily identified—it is the consequence of the fact that the function
Ga(x,x′, t ′, ω) is independent of the x coordinate. The x-dependence has been lost upon
extracting the low-frequency asymptotic of Ja in equation (18).

3.2. The influence of external electric field and particle collisions

Let us now consider corrections to the power spectrum due to constant homogeneous external
electric field, taking into account also the influence of particle collisions. These corrections
are twofold. First of all, the field affects the particle wavefunction a(q), which is symbolized
in figure 2 by inserting the vertices of particle–field interaction into the two external solid lines.
This is only a schematic picture, because the effect of a constant homogeneous field on the
free particle states cannot be treated perturbatively. The latter circumstance, however, is not
important in view of the particle collisions which prevent the particle from gaining too much
momentum from the field, thus cutting down its effect (particle collisions are symbolized in
figure 2 by a virtual photon interchange between particles). Account of these two factors is
accomplished by replacing the particle momentum probability distribution, |a(q)|2, by the
statistical distribution function, obtained as a solution of the kinetic equation in the presence
of external electric field. This point will be discussed in more detail later in this section.

Next, the particle propagator is also modified by the external field. It is not difficult to see
that for a sufficiently small field strength, E, this modification can be treated perturbatively.
It can be recalled that in coordinate space, it amounts to multiplying the zero-field propagator
Dφ(z, z′) by4 exp{ie(E,z + z′)(z′

0 − z0)/2}. Although the low-frequency limit is determined
by the large-time behaviour of the quantities involved, implying that (z′

0 − z0) ∼ 1/ω is large,
the exponent can be made as small as desired for any given ω by taking |E| sufficiently small.
This also will be clear from the explicit calculations to follow. The lowest order correction to
the correlation function is represented by diagrams with a single insertion of the particle–field
interaction vertex into the internal solid line, as shown in figure 3. As in the preceding section,
these diagrams vanish unless all interaction vertices are 1-type, on account of momentum
conservation in the vertices together with the mass shell conditions for the massive particle.

4 This phase factor incorporates contributions involving only vertices linear in the photon field. This is sufficient for
the subsequent discussion concerned with the leading correction to the propagator. Inclusion of the other interaction
vertex adds terms of higher orders in E to the exponent.
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(a) (b)

Figure 3. Feynman diagrams describing the first-order external field correction to the particle
propagator.

The contribution of the diagram shown in figure 3(a) to the spectral density of the two-point
Green function

GE
a (x,x′, t ′, ω) = (4πe)2

∫∫∫
d3q

(2π)3

d3p

(2π)3

d3k1

(2π)3

a(q)a∗(q + p)√
2εq2εq+p

× exp(ip0(t ′ − t0) − i(p − k1)x
′ϕ(k1)J

E
a (p, q,x − x′, ω)), (24)

where

JE
a (p, q,x − x′, ω) = −ie

∫
d3k

(2π)3
eik(x′−x)(2q0 + k0)(2q0 + 2k0)(2q0 + k0 + p0)

D11(k)D
φ

11(q + k)D
φ

11(q + k + k1)D11(k + k1 − p)|k0=ω, k1 = (0,k1),

(25)

and ϕ(k) is the Fourier transform of the external field potential, ϕ(x) = −(E,x). We do not
include an arbitrary constant in this expression because it is clear in advance that it cannot affect
the final result. It is proved in the appendix that the correlation function is actually invariant
under the most general gauge variations of the electromagnetic potential. Substituting

ϕ(k) = −i(2π)3

(
E,

∂

∂k

)
δ(3)(k)

into equation (24) and integrating by parts, the k1 integral in equation (24) is brought to the
form

i
∫

d3k1δ
(3)(k)

(
E,

∂

∂k1

) [
D

φ

11(q + k + k1)D11(k + k1 − p) e−i(p−k1)x
′]
, (26)

where only terms involving k1 are retained. As we have seen, the singularity at ω = 0
in the function Ga(x,x′, t ′, ω) comes from integration over small k, and this singularity
is now strengthened by the extra particle propagator and the differentiation with respect to
k1.

5 Consider first the case when the k1-derivative acts on the last two factors in the square
brackets. Since these depend on the difference (p − k1), changing ∂/∂k1 → −∂/∂p, and
then integrating by parts with respect to p in equation (24), this derivative is rendered to act

5 Independently of the proof given in the appendix, it can be noted that the constant term in the potential does not
involve the k1-differentiation, and hence does not contribute to the leading singularity for ω → 0 anyway.
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on terms independent of k6. Thus, of the three factors in the square brackets, only the first is
to be differentiated in effect, thus reducing expression (26) to

2i(E, q + k)

[m2 − (q + k)]2
D11(k − p) e−i(px′).

Taking into account also the vertex factor e(2q0 + 2k0), we see that the first-order correction to
the charged particle propagator due to constant homogeneous external electric field is obtained
by inserting the factor

4ie(q0 + k0)(E, q + k)

[m2 − (q + k)]2
≡ �

into the integrand in equation (15). The rest of the calculation repeats the steps of
section 3.1. Substituting explicit expressions for the photon propagators, one sees that only the
part proportional to δ(k2) is to be retained in the expression for D11(k), while the corresponding
part in D11(k − p) is to be omitted. One consequence of this observation is that the factor �

simplifies to

ie(Eq)

mω2
,

where we have taken into account that k0 = ω 	 q0, and |k| = |ω| 	 |q| (indeed, taking
our standard example of electron in a crystal, the ratio |ω|/|q| is, in the ordinary units,
(h̄|ω|/c)/|q| ∼ |ω|d/c ∼ |ω|10−18, with ω expressed in Hz). Another consequence is that
the contributions of the diagrams shown in figures 3(a) and (b) are related, as before, by7

GE
b (x,x′, t ′, ω) = GE∗

a (x,x′, t ′,−ω).

Furthermore, equation (18) is now replaced by

JE
a (p, q,x − x′, ω) = �

2π(2m + p0)

ωβ|ω|p2

∫
d3k

(2π)3
eik(x′−x)δ(ω2 − k2)

= ie(Eq)

mω2

(2m + p0)

2πωβp2

[
1 − ω2

6
(x′ − x)2

]
+ O(ω). (27)

An important difference in comparison with the result of the preceding section is that because
of the extra imaginary unit brought in by the factor �, the term proportional to p0 in the last
formula gives rise now to a purely real contribution upon substituting JE

a in equation (24),
and hence is cancelled8 in the sum of the diagrams shown in figures 3(a) and (b). On the

6 Moreover, if the function a(q) is decomposed as in equation (21), and the potential is chosen respectively to vanish
at the point x0, i.e., ϕ(x) = −(E, x−x0), then the p-derivative acts on the product of eipx0 with the slowly varying
factors b(q + p), εq+p, p0. Differentiation of the exponent gives x0 which just cancels the purposely chosen constant
term in the potential, while the result of differentiation of the remaining factors can be neglected to the leading order
of the long-range expansion. This observation can be useful in assessing the higher order corrections to the correlation
function.
7 It is convenient to prove this relation before the integration over k1 using the following sequence of substitutions:
k → k + p − k1, q → q − p, and then p → −p. The extra factor (−1) coming from complex conjugation
of the imaginary unit in the factor � is compensated by that from the integration by parts with respect to k1.

Alternatively, this can be proved directly in coordinate space (after extracting the relevant contribution) by substituting
exp

{
ie(E, z + z′)(z′

0 − z0)/2
}
Dφ(z, z′) for the particle propagator, interchanging the integration variables z, z′, and

taking into account symmetry of the functions D(x, z), Dφ(z, z′).
8 Here p is neglected in comparison with q. Otherwise, there is a residual term proportional to p0 in the total
of the two diagrams. The usual manipulation with the integration variables q → q − p, p → −p shows that
this term can be obtained by substituting (Eq) → (Ep). Its ratio to the main contribution considered in the
text is |p|p0/m|q| ∼ p2/m2. For electrons in a sample of characteristic size l cm, this is, in the ordinary units,
(h̄/ lmc)2 ∼ 10−20/l2.
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other hand, the terms independent of p0 survive, and lead to the following expression for the
first-order correction to the spectral density of the two-point Green function

GE(x,x′, t ′, ω) = −16π ie3

mβω3

[
1 − ω2

6
(x′ − x)2

]

× Re
∫∫

d3q

(2π)3

d3p

(2π)3
a(q)a∗(q + p)

(Eq)

p2
eip0(t

′−t0)−i(px′). (28)

In a many-particle system, this result is to be expressed through the one-particle density matrix,
which is accomplished by replacing a∗(q′)a(q) → �0(q

′, q), where �0 is the momentum space
density matrix at the time instant t0. We recall that t0 denotes the instant at which the particle
state a(q) is prepared. It can be identified, for instance, as the moment the charge carrier
enters the sample, or escapes from a surface trap, etc. The factor eip0(t

′−t0) in the integrand then
realizes time evolution of the density matrix from t0 to t ′. Since p0 = (q + p)2/2m − q2/2m,

this is a free evolution. The fact that the evolution of charge carriers in solids is not actually
free on macroscopic scales is not important for the present consideration in which appearance
of the 1/ω-singularity is related to the effects of the medium on the field propagators. In this
respect, it is essentially different from considerations of [11], in which time evolution of the
particle wave packet was the central issue, and, in particular, the requirement that the particle
collisions be elastic was important. To take into account particle collisions in the present case,
it is sufficient to consider them as instantaneous. Then the interval (t0, t

′) is divided into a
sequence of short time intervals of order τf (the particle mean free time), on each of which the
density matrix evolves freely as in equation (28), and changes abruptly at the collision instants.
Going through this sequence the density matrix tends to the stationary statistical distribution
function, �(q′, q), which is independent of the initial particle state. What is important here
is the sign of the difference (t ′ − t0). Recall that t ′ is a fixed time instant to count off the
time interval τ with respect to which the correlation function is Fourier-transformed, and that
each particle has its own t0. This means that for a given ω, the system is observed during the
time interval (t ′ − �t, t ′ + �t), where �t ∼ 1/ω, and t0 s are distributed uniformly over this
interval. The density matrix evolves forward (backward) in time, if t ′ > t0 (t ′ < t0). But time
reversal involves inversion of particle momentum, and therefore, the reciprocal contributions
to the function GE(x,x′, t ′, ω) have opposite signs. To be more specific, let (t ′ − t0) > 0.

Then the exponent eip0(t
′−t0) realizes a forward evolution of the density matrix, so that the

integral in equation (28) takes eventually the form∫∫
d3q

(2π)3

d3p

(2π)3
�(q + p, q)

(Eq)

p2
e−i(px′). (29)

On the other hand, if (t ′ − t0) < 0, then the density matrix evolves backward. In momentum
space, the initial state of the reversed motion is represented by the amplitude ã(q) = a∗(−q).

Taking complex conjugate of the integral in equation (28) (which does not change the value
of GE in view of the sign ‘Re’), and changing the integration variables q → −q,p → −p
gives in this case

−
∫∫

d3q

(2π)3

d3p

(2π)3
ã(q)ã∗(q + p)

(Eq)

p2
eip0(t0−t ′)−i(px′).

After replacement ã∗(q + p)ã(q) → �̃(q + p, q), where �̃ plays the role of the momentum
density matrix at the moment t ′, the exponent eip0(t0−t ′) governs forward evolution of this state
on the interval (t ′, t0), so that the above expression takes the form

−
∫∫

d3q

(2π)3

d3p

(2π)3
�(q + p, q)

(Eq)

p2
e−i(px′).
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The density matrix here is the same as in (29), because the statistical distribution is independent
of the initial state. We see that reciprocal contributions to the function GE(x,x′, t ′, ω) cancel
each other when summed over all particles in the system. Thus, we arrive at the important
conclusion that the total noise intensity is independent of the number of particles, and remains
at the level of individual contribution. As was shown in [11], this conclusion is also true of
the disconnected part of the correlation function, though by virtue of quite different reasons.

It is customary to further express the function �(q′, q) via the real mixed distribution
function, n(r, q), according to

�(q + p, q) =
∫

d3r ei(pr)n
(
r, q +

p

2

)
.

Probability distributions for the particle position in a sample and for its momentum can be
obtained by integrating n(r,p) over all p and the sample volume, respectively. Using this in
expression (29), and substituting the latter into equation (28) yields

GE(x,x′, t ′, ω) = −16π ie3

mβω3

[
1 − ω2

6
(x′ − x)2

]

× Re
∫∫∫

d3q

(2π)3

d3p

(2π)3
d3r

(Eq)

p2
n

(
r, q +

p

2

)
eip(r−x′). (30)

As we know, the first term in the square brackets in this formula doest not contribute to the
voltage power spectrum, and can be omitted. Furthermore, after shifting q → q − p/2, and
omitting the imaginary term proportional to (E,p), the triple integral becomes purely real, so
the symbol ‘Re’ can be omitted. Integrating then over p with the help of the formula∫

d3p

(2π)3
ei(px) 4π

p2
= 1

|x| ,
we thus obtain

GE(x,x′, t ′, ω) = 2ie3(x′ − x)2

3mβω

∫∫
d3q

(2π)3
d3r(Eq)

n(r, q)

|r − x′| . (31)

Equation (12) shows that the spectral density of the correlation function is given by the
same expression (31), so that the power spectrum of voltage fluctuations is, according to
equation (10),

CU(x,x′, t ′, ω) = −2ie3(x′ − x)2

3βω�

∫
d3r(E,v(r))

(
1

|r − x| +
1

|r − x′|
)

, (32)

where

v(r) = �

∫
d3q

(2π)3

q

m
n(r, q)

is the local drift velocity of the charge carriers, � denoting the sample volume. For a crystal
in the homogeneous external field, v is a function of the crystalline direction,

vi = µikEk, i, k = 1, 2, 3,

where µik is the charge carrier mobility tensor. With the help of this formula equation (32)
can be rewritten as

CU(x,x′, t ′, ω) = −iη
U 2

0

ω
, η ≡ 2e3µg

3β
, (33)

where

µ = µiknink, n = E

|E| ,
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U0 = |E||x−x′| is the bias applied to the sample (it is assumed that E‖(x−x′), as is usually
the case), and g is a geometrical factor

g ≡ 1

�

∫
�

d3r

(
1

|r − x| +
1

|r − x′|
)

. (34)

If Fourier transformation is defined in a purely real form, i.e., as a decomposition in
cos(ωτ), sin(ωτ), rather than in eiωτ , then the spectral density is also real:

CU(x,x′, t ′, ω) = η
U 2

0

ω
, η ≡ 2e3µg

3β
, (35)

We mention for future reference that if the sample is an elongated parallelepiped with the
leads attached to its ends (as is usually the case in practice), then the g-factor can be evaluated
as

g ≈ 2

lwh

∫ l

w

wh dx

x
= 2

l
ln

l

w
, (36)

where l, w, h denote the sample length, width and thickness, respectively, and it is assumed
that h < w 	 l. We note also that in the ordinary units, the dimensionless factor η reads

η = 2e3µg

3βh̄2c3
= 2α2

3ec
gµT ,

α being the fine structure constant. In particular, in the CGS system of units,

η ≈ 3.4 × 10−22gµT, (37)

where the absolute temperature T is to be expressed in ◦K.

3.3. On the unboundedness of 1/f -spectrum

In this section, a special feature of the derived expression for the power spectrum, namely, its
oddness in frequency, will be discussed in connection with the problem of observed absence
of frequency limits of the 1/f -law. As was mentioned in the introduction, 1/f noise has been
detected in a very wide frequency band ∼10−6 Hz to 106 Hz. This fact represents one of the
essential difficulties for theoretical explanation, because all physical mechanisms underlying
existing models of flicker noise work in much narrower subbands, and none of the models
suggested so far has been able to explain the observed plenum of the 1/f -spectrum.

On the other hand, the existence of bounds on this spectrum is generally believed to be
necessary in order to guarantee finiteness of the total noise power. There is a well-known
argument [17] according to which these limits are actually unnecessary when the flicker noise
exponent γ is strictly equal to unity, because the logarithmic divergence of the total power is not
a problem in this case in view of the existence of natural frequency cutoffs such as the inverse
Planck time and lifetime of Universe. However, this reasoning does not work for γ �= 1, in
which case divergence is a power of the cutoff. At the same time, the results obtained above
reconcile unboundedness of 1/f -spectrum with the requirements of stationarity and finiteness
of the total noise power in a quite natural way. Indeed, using equation (33) we find∫ +∞

−∞

dω

2π
CU(x,x′, t ′, ω) eiωτ = ηU 2

0

∫ +∞

−∞

dω

2π

sin(ωτ)

ω
= τ

|τ |
ηU 2

0

2
.

More generally, if the spectrum CU ∼ 1/f γ is continued to negative f ’s as an odd function,
then for any 0 < γ < 2 the integral∫ +∞

−∞
dωCU eiωτ ∼

∫ +∞

0
df

sin(2πf τ)

f γ
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is convergent in both limits f → 0 and f → ∞. In particular, the singular contribution to the
voltage variance (i.e. to the quantity CU(t, t ′)|τ=0) vanishes.

Since appearance of odd contributions to the power spectrum is somewhat unusual in
macroscopic fluctuation theory, let us discuss it in more detail. Under stationary external
conditions, the voltage noise power spectrum (to be denoted below simply as CU(t, t ′), with
the spatial arguments suppressed, for brevity) must be independent of t ′. This is an expression
of the noise stationarity, or, using a term more suitable for the subsequent discussion, time
homogeneity with respect to the macroscopic system. It is usually realized as the requirement
that CU(t, t ′) be a function of the difference t − t ′ ≡ τ. Since CU(t, t ′) is also symmetric
with respect to the interchange t ↔ t ′, an immediate consequence of this is that it is actually
a function of |τ |, and hence the spectral density is a real even function of frequency. It is
important, on the other hand, that time homogeneity is not necessarily exhibited by individual
contributions to the total voltage fluctuation, whatever mechanism of flicker noise generation
be. In particular, this property evidently does not take place at the microscopic level, i.e., with
respect to elementary processes such as charge carrier trapping, surface or grain boundary
scattering, etc. Stationarity of the macroscopic process emerges usually upon summation over
a large number of individual contributions, so that this microscopic inhomogeneity turns out
to be inconsequential. However, this summation is not the only way to obtain a stationary
correlation function symmetric in t, t ′. Another possibility, which is realized in the present
paper, is that flicker noise may be a one-particle phenomenon, in the sense that the entire effect
can be ascribed to elementary fluctuations produced by single charge carriers. In this case
the function CU(t, t ′) does not have to depend solely on |τ |, and as the explicit calculations
of section 3 show, it actually does not. As was mentioned above, elementary processes
are inhomogeneous in time, and hence the symmetry with respect to t ↔ t ′ imposes no
restriction on the τ -dependence of the correlation function. The only remaining requirement,
namely reality of the correlation function, implies that contributions to the spectral density
must be real even, or imaginary odd functions of frequency (cf equation (12)). These two
cases correspond to the Fourier decomposition of the function CU(t ′ + τ, t ′) in cos(ωτ) and
sin(ωτ), respectively, and describe the parts symmetric and antisymmetric with respect to the
difference of its time arguments. Finally, transition to the statistical distribution removes the
t ′-dependence of the power spectrum (cf transition from equation (28) to equation (30)). This
restores macroscopic time homogeneity of the correlation function, but leaves the possibility
of being odd with respect to the difference of its time arguments. In other words, dependence
of the power spectrum on t ′ shows itself only at microscopic scales, while macroscopically
fluctuations look as if they were homogeneous in time.

The 1/f -spectrum derived in the previous section has no lower frequency cutoff. As to
the upper bound, it is given by the condition f 	 T (see section 2.1), or in the ordinary units,
f 	 kT /h̄ ≈ 1011T Hz, with T expressed in K. We see that from the practical point of view,
the obtained spectrum has no upper cutoff either.

3.4. Validity of equation (35) and comparison with experimental data

Let us next discuss the range of applicability of the obtained results. It will be shown below
that validity of the perturbative treatment of the external field imposes a very strong bound on
the field strength. For this purpose we first collect all characteristic factors that have appeared
in the course of extracting the 1/ω-asymptotic of the voltage power spectrum. As we have
seen, the insertion of the vertex describing interaction of the virtual charged particle with
external field amounts to multiplying the zero-field diagram by the factor, in the ordinary
units, e(Eq)/(mω2h̄), which is eventually promoted by the q-integration into eµE2/(ω2h̄).
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Furthermore, the leading non-vanishing contribution to the voltage correlation function has
been obtained after expanding eik(x−x′) in the integrand of the k-integral, which brought in
a factor ω2(x − x′)2/c2. Thus, the overall factor is eµE2(x − x′)2

/
(c2h̄) = eµU 2

0 /(c2h̄).

This is small provided µU 2
0 	 c2h̄/e ≈ 103 units CGS, which is a quite soft requirement

met in virtually all flicker noise measurements (cf the examples below). The problem with
this estimation, however, is that at higher orders, the scalar product (Eq) is to be estimated as
|E||q|, because (Eq)2 is of the order (|E||q|)2, rather than (Eq)2. As a result, the requirement
that the factor e(Eq)/(mω2h̄) be small leads to the following upper bound on the electric field
strength for a given frequency ω, in the CGS system of units, |E| 	 dmω2/e ≈ 10−25ω2. At
the same time, the values |E| ∼ 1 are quite normal in flicker noise measurements. In other
words, from the point of view of the developed theory, the experimentally relevant regime is
identified as the strong field limit. Yet the use of equation (35) in this limit can be justified to a
certain extent by recalling that the perturbative expansion is in reality an asymptotic expansion,
and hence the fact that equation (35) gives the first non-vanishing term of the voltage noise
power spectrum implies that the question of validity of the perturbative expansion is actually
a question of whether or not it is legitimate to use this expansion to obtain higher order
corrections to equation (35). A rigorous justification is a difficult task because it requires the
use of non-perturbative methods. Thus, this issue is left open until careful investigation of the
strong field limit. One of the possible ways this problem can hopefully be resolved is a partial
summation of the perturbation series, followed by an analytical continuation with respect
to �.

After this discouraging observation of strong divergence of the asymptotic series, the
more striking turns out to be the fact that equation (35) is in a general agreement, qualitative
and even quantitative, with the existing experimental data. First of all, the spectral density
is quadratic in the applied bias. This is perhaps the most solidly established property of
flicker noise. Second, the noise level is inversely proportional to the sample size. As to
the dependence of flicker noise amplitude on sample dimensions, agreement in the literature
is not that well. Experiments are usually arranged so as to prove one of the two main
competing points of view on the flicker noise origin, namely whether it is a bulk or surface
effect. Although this issue is far from being resolved, there is no doubt that the noise
level increases with decreasing sample size. Third, it is generally agreed that, with other
things being equal, the flicker noise is more intensive in semiconductors than in metals,
and this is again in conformity with equation (35), because charge carrier mobility is higher
in semiconductors than in metals, usually by several orders. Unfortunately, determination
of mobility in semiconductors (or semimetals) is a difficult problem, both theoretically and
experimentally, and different experiments often give significantly different results. By this
reason, the subsequent quantitative consideration will be carried out for metals only. Even
in this case careful estimation of the noise level takes some effort. This is because electron
mobilities in thin metal films commonly used in flicker noise measurements differ essentially
from the corresponding bulk values, varying non-monotonically with the film thickness, and
exhibiting complicated temperature dependence. Thus, the thicker the film, the more reliable
comparison of theoretical and experimental results. Fortunately, the modern instrumentation
allows measurements in sufficiently thick samples, electrical transport in which has bulk
properties (usually, effects related to film thickness become important for h less than a few
hundred nanometres). As is well known, temperature dependence of the electron mobility in
this case is well approximated by the 1/T law. Theoretically, this approximation is valid for T
higher than the Debay characteristic temperature, but in most cases it is practically applicable
already for T � 50 K. Thus, it follows from equation (35) that the flicker noise level in thick
samples is temperature independent. This conclusion is confirmed, e.g., by the results of [18]
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where 1/f noise was measured in 2.44 µm thick metal films, which is quite sufficient for bulk
treatment of the sample conduction. According to figure 5 of [18], the flicker noise level is
constant for T � 50 K indeed. Unfortunately, the authors of [18] did not specify the metals
used in their experiments, which makes further comparison with equation (33) impossible.

In order to compare the absolute value of the noise spectral density given by equation (35)
with experimental data, we use the results of the classic paper [19] where flicker noise in thin
metal films was investigated. The information provided in this paper is sufficient for estimation
of the noise intensity in the gold film shown in figure 2 of [19]. This was an elongated sample
with h = 25 nm, w = 8 µm, l = 625 µm, biased at U0 = 0.81 V, and operated at about
40 K above room temperature. Substituting the sample dimensions in equation (36) gives
g = 140 cm−1. Estimation of the electron mobility is more subtle. As was mentioned above,
charge carrier mobility in thin films strongly deviates from its bulk value, and this deviation is
the main source of uncertainty in evaluating the noise level. In the case under consideration, µ
is isotropic and can be found using the relation µ = σ/en, where σ is the electrical conductivity
of gold, and n = 5.9 × 1022 cm−3 is the free electron concentration. The bulk conductivity of
gold at T = 330 K is equal to 4.0 × 107 �−1 m−1, but in thin films the value of σ is strongly
affected by the grain boundary and surface scattering, surface roughness and other factors.
The relevant value of conductivity can be calculated indirectly using the I–V characteristic
of the given gold sample, shown in figure 3 of [19]. According to this figure, the sample
resistance was about 100 �. Taking into account the sample dimensions given above, this
implies that σ = 1.2 × 106 �−1 m−1. It should be mentioned that this value is approximately
six times lower than that obtained in more recent studies of electrical transport in thin films.
For instance, according to [22] conductivity of a 25 nm thick, 15 µm wide gold film obtained
by a laser-improved deposition of nanoparticle suspension, is 7.1 × 106 �−1 m−1. The same
value can be obtained also indirectly using the data given in [20, 21]. According to [20],
the conductivity of gold is 75% to 85% of its bulk value for h = 100 nm, depending on the
choice of the substrate, and decreases below that value approximately linearly with decreasing
thickness. On the other hand, according to [21] conductivity drops to about 3 × 105 �−1 m−1

for h = 5 nm. One readily finds from this that for h = 25 nm, σ = (6.5–7.5) × 106 �−1 m−1.

Presumably, this difference in the values of conductivity is to be attributed to the quality of
film deposition. In the case of σ = 1.2 × 106 �−1 m−1, the electron mobility equals µ =
1.3 cm2 V−1 s−1, and then equation (37) gives η = 6.0 × 10−15. Substituting this together
with the bias value given above in equation (35), and setting ω = 2πf yields CU = 6.3 ×
10−16 V2 Hz−1 for the frequency f = 1 Hz, which is to be compared with the experimental
value CU ≈ 10−15 V2 Hz−1.

4. Discussion and conclusions

We have shown that the combined action of the temperature and external field effects results
in appearance of a principally new contribution to the power spectral density of quantum
electromagnetic fluctuations, given by equations (32) and (33). The power spectrum is thus
modified both qualitatively and quantitatively. Being odd with respect to frequency, the
new term in the power spectrum describes correlations in the values of voltage measured
at two time instants, which are finite for all times. The underlying reason that makes the
appearance of the new term possible (apart from the two factors mentioned in the beginning
of this paragraph) is the inhomogeneity in time of fluctuations produced by individual charge
carriers. As discussed in section 3.3, oddness of the found 1/f -contribution gives a natural
explanation to the observed unboundedness of flicker noise spectrum. Although the obtained
result is valid, strictly speaking, only for very weak fields, we have seen in section 3.4 that
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it is in qualitative and quantitative agreement with experimental data even beyond its formal
range of applicability.

Next, an important qualitative difference of the present considerations from those of [10]
is to be emphasized. As we have seen in section 3, frequency dependence of the power
spectral function is determined completely by an internal structure of the Feynman diagrams
representing the connected part of the correlation function. In other words, dispersion of
the correlation function, considered in the present paper, is related to the properties of virtual
quanta propagation, and not to the time evolution of the charge carrier wavefunction. This is in
contrast to considerations of [10] where the 1/f asymptotic of the power spectrum was related
to the spreading of the particle wave packet, and was derived by evaluating the disconnected
part of the correlation function.

Finally, regarding discussion of section 3.4 it should be stressed that for the purpose of
experimental verification of equation (33) only the genuine 1/f noise data were used, i.e.,
the data that fit the law f −γ in which γ = 1, within experimental error. Otherwise the
comparison would be meaningless, even for f ≈ 1 Hz. Large deviations of γ from unity,
observed in some thin films, are presumably due to back reaction of the conducting medium
on the electromagnetic field produced by the charge carriers. This issue will be considered
elsewhere.
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Appendix. Gauge independence of the correlation function

Consider the theory of interacting scalar and electromagnetic fields described by the action

S = Sφ + SA,

where Sφ is given by equation (5), and

SA = −1

4

∫
d4xFµνF

µν + Sgf , Sgf = 1

2α

∫
d4x(∂µAµ)2, Fµν = ∂µAν − ∂νAµ.

For arbitrary constant parameter α, the gauge fixing term describes the generalized Lorentz
gauge. Let us introduce the generating functional of Green functions

Z[J, η, η∗] =
∫

dA dφ dφ∗ exp

{
i

(
S +

∫
d4x[JµAµ + η∗φ + ηφ∗]

)}
, (A.1)

where J, η, η∗ denote sources for the fields A,φ∗, φ, respectively. Vanishing of Z under the
gauge variation of the functional integral variables

δAµ = ∂µξ(x), δφ = ieξ(x)φ, δφ∗ = −ieξ(x)φ∗,

with ξ(x) a small gauge function, leads to the Ward identity

−i∂µJµ(y)Z +
�
α

∂µ

δZ

δJµ(y)
+ ieη∗(y)

δZ

δη∗(y)
− ieη(y)

δZ

δη(y)
= 0. (A.2)

Since we are interested in the connected contribution to the correlation function, we rewrite
this identity for the generating functional of connected Green functions, W = −i ln Z,

−∂µJµ(y) +
�
α

∂µ

δW

δJµ(y)
+ ieη∗(y)

δW

δη∗(y)
− ieη(y)

δW

δη(y)
= 0. (A.3)
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The consequence of this equation we need is obtained by functional differentiation with respect
to η, η∗, and twice with respect to J, with all the sources set equal to zero afterwards,

�y

α
∂y
µ

δ5W

δJµ(y)δJα(x)δJβ(x ′)δη(z)δη∗(z′)
+ ieδ(4)(y − z′)

δ4W

δJα(x)δJβ(x ′)δη(z)δη∗(y)

− ieδ(4)(y − z)
δ4W

δJα(x)δJβ(x ′)δη(y)δη∗(z′)
= 0.

Fourier transform of this identity with respect to y reads

k2
1

α
k1µ

∫
d4y e−ik1y

δ5W

δJµ(y)δJα(x)δJβ(x ′)δη(z)δη∗(z′)

= e(e−ik1z
′ − e−ik1z)

δ4W

δJα(x)δJβ(x ′)δη(z)δη∗(z′)
. (A.4)

The argument of the Fourier transform is purposely denoted here by k1 to stress that the
left-hand side of this equation corresponds to the variation of the Green function we dealt with
in section 3, under gauge variation of the external field. Indeed, the longitudinal part of the
photon propagator in the generalized Lorentz gauge has the form

Dl
µν(k) = −α

kµkν

k4
. (A.5)

Therefore, contraction with the factor k2
1k1µ/α is equivalent to amputation of the photon

propagator attached to the y vertex, followed by contraction of this vertex with k1µ. Exactly
the same result is obtained under a gauge variation of the external field coming into this vertex.
The only difference with the Green function we considered in section 3 is that the external
scalar lines in equation (A.4) are the particle propagators. To promote them into particle
amplitudes, according to the standard rules, equation (A.4) is to be Fourier transformed with
respect to the variables z, z′, and then multiplied by a(q)a∗(q′)(m2 −q2)(m2 −q ′2), where the
arguments q, q ′ of the Fourier transformations with respect to z, z′ are to be taken eventually
on the mass shell. But these operations give zero identically when applied to the right-hand
side of equation (A.4), because each of the factors e−ik1z

′
and e−ik1z makes the corresponding

particle propagator nonsingular on the mass shell. For instance, the first term in equation (A.4)
gives rise to the contribution of the form (m2 −q ′2)Dφ(q ′ +k1) times terms nonsingular on the
mass shell. For k1 �= 0, the function Dφ(q ′ + k1) is also nonsingular at q ′2 = m2, and hence
this contribution vanishes on the mass shell.

Thus, the correlation function is invariant under the gauge transformations of the external
field, which are part of the gauge freedom in the theory. The other part is related to the
explicit dependence of the photon propagator on the choice of the gauge conditions used to
fix the gauge invariance of the action. As is well known, it is the longitudinal part of the
propagator that depends on the gauge, and the most general Lorentz-invariant form of this part
is given by equation (A.5) in which α is to be regarded as an arbitrary function of k2. It is not
difficult to see that variations of α(k2) do not affect the observable quantities. Recall, first of
all, that we are interested ultimately in the fluctuations of gauge-invariant quantities such as
the electric field strength. The α-independence of these quantities is a direct consequence of
their gauge invariance, because variations of α(k2) give rise to terms that are pure gradients
with respect to the spacetime arguments x, x ′, as is easily verified by substituting expression
(A.5) in place of one or two photon propagators in equation (13). Then, if the vector potential
contribution to the field strength is negligible, as is the case in our nonrelativistic calculation
(recall the condition |q| 	 m used throughout), the voltage correlation function can be found
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by integrating the correlation function for the field strength with respect to x,x′ using the
relation E = −∇A0.

Thus, gauge-independence of our results expressed by equations (32) and (33) is proved.
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